FindAll: A Local Search Engine for Mobile Phones

Aruna Balasubramanian
University of Washington

arunab@cs.washington.edu

Niranjan
Balasubramanian
University of Washington

Samuel J. Huston
. UMass Amherst
sjh@cs.umass.edu

niranjan@cs.washington.edu

Donald Metzler
USC
metzler@isi.edu

ABSTRACT

We present the design and evaluation of FindAll, a local search
engine that lets users search and retrieve web pages, even in the
absence of connectivity. Our user study with 23 users show that
mobile users often search for web pages that they have previously
visited, known as re-finding. This re-finding behavior makes the
case for a local solution. FindAll goes beyond caching and using
keyword search, and instead, implements a full blown search engine.
The key challenge in FindAll is in designing a search engine, which
is both memory- and energy-intensive, on the constrained phone
environment. To this end, FindAll balances the cost of running the
search engine with the expected benefits of serving a web page
locally. FindAll estimates the benefits of local search, by learning
the re-finding behavior of users. We implement FindAll on Android
by adapting a publicly available search engine. Our evaluations,
based on the traces collected from our user study, shows that FindAll
reduces search latency by two-folds for users who re-find often, and
reduces 3G data usage by up to 100 MB a month.

Categories and Subject Descriptors

C.2 [Computer Communication Network]: Network Architecture
and Design— Wireless Communication

General Terms

Algorithms, Design, Performance

Keywords

Web search, Latency, Energy savings, Local search, Refinding, Mea-
surement, User study

1. INTRODUCTION

Many popular smartphone apps, including web search, maps,
yelp, and others, solely rely on the cloud for its operations. The
apps fail completely during periods of no connectivity and perform
poorly during periods of bad connectivity. This reliance on the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CoNEXT’12, December 10-13, 2012, Nice, France.

Copyright 2012 ACM 978-1-4503-1775-7/12/12 ...$15.00.

David J. Wetherall

University of Washington
djw@cs.washington.edu

cloud can severely degrade user experience, especially on cellular
networks—cellular networks have high round trip delays [14], offer
poor connectivity [27], and are often unavailable [7]. Even with
good cellular connectivity, a web search session is an order of
magnitude slower on mobile phones than on desktops [15, 25].
3G data is also becoming increasingly expensive, and as cellular
providers introduce tiered data plans [21], users are becoming more
aware of their 3G data usage.

Improving the local availability of content can help mitigate these
issues. Mobile storage is advancing at a rapid pace, and technology
trends suggest that storage capacity will continue to rise and will
remain cheap [15]. Thus, trading local storage for connectivity is an
attractive alternative to always relying on the cloud.

In this work, we focus on using local storage to improve the per-
formance of web search. To this end, we leverage the re-finding
behavior of web search users; users often search for web pages
that they have previously visited [23]. Re-finding queries constitute
nearly 80% of the total queries issued by more than half the popula-
tion of mobile users [18] . If users can effectively search through
their local caches, a significantly large fraction of searches queries
can be answered locally.

Imagine that a mobile user Alice is browsing some product web
pages on her laptop or her phone. She wants to re-find a specific
product page on her phone when she goes to a store, but the con-
nectivity to 3G is poor. How should her smartphone support local
search? Manually browsing through the browser history is cum-
bersome [4]. Web caches require that Alice has access to the URL
link, which is usually long, not easy to remember, and is rarely
used for re-finding [10]. Search engines such as Google [20] and
Bing [19] store user history in the cloud. However, using the search
engine’s cloud-history feature requires network connectivity, and
further, storing the user history in the cloud raises privacy concerns.

We present FindAll, a system that collects all web pages that the
user visits on all of her devices, caches them locally, and indexes '
them. FindAll then implements a full scale search engine over
this local index to allow users to effectively search over their local
history.

A local search engine will allow Alice to re-find desired web
pages quickly, privately, and without depending on network con-
nectivity. The key challenge in FindAll is the high resource cost
of running a conventional search engine on the phone. Building
search engine indexes is both a memory- and an energy-intensive
operation.

The FindAll design is motivated by a user study in which we
logged the mobile search and browsing patterns of 23 participants

"An index is a data structure used by search engines for fast and
efficient retrieval.

for 30 days. We also logged the corresponding desktop search
patterns for a subset of the users. We find that, similar to other
mobile studies, re-finding was common in our dataset with 52% of
the queries being re-finding queries. We leverage two key findings
from our study to design FindAll. First, almost 45% of the re-
finding queries were submitted within 50 minutes of the original
request. This suggests that we need to locally index web pages near
when they are browsed, rather than indexing pages in the cloud and
periodically downloading them. Second, there is a large diversity in
re-finding behavior across users, but each user tends to be relatively
consistent in their level of re-finding. This suggests that FindAll
should adapt to the user’s re-finding patterns, so that the index
computation, an energy intensive operation, is performed only when
it is beneficial to the user.

FindAll seeks to balance two goals: maximizing the local avail-
ability of web pages, while ensuring that the energy consumption
for FindAll operations is no more than that of default search. The
central question in the FindAll design is: When should FindAll in-
dex web pages? If web pages are indexed frequently they are more
available in the local cache, but the energy to index the web pages
increases. If the web pages are indexed less frequently, they will not
be available locally when the user tries to re-find the web page.

The FindAll algorithm indexes web pages when the energy to
index is lower than the expected cost of not indexing. By not
indexing a web page locally, FindAll incurs a cost, because the
web page will have to be downloaded from the Internet. However,
FindAll incurs this cost only if the user searches for the web page.
FindAll estimates the probability that a user will search for a web
page by learning user behavior; it uses this probability estimate to
compute the benefits of indexing. As a result, FindAll aggressively
indexes when users are expected to re-find often, and indexes more
conservatively when users are not expected to re-find.

We implement FindAll in Android by adapting Galago [2], a
publicly available search engine, to mobile phones. We evaluate
our implementation using traces from real mobile users. We find
that FindAll significantly improves web search performance by in-
creasing local availability of web pages by 40%. By improving
availability, FindAll reduces search latency by a factor of two for the
users who re-find often. By reducing Internet downloads, FindAll
reduces 3G data usage by up to 100 MB a month for users who
re-find often.

Importantly, these improvements do not come at an energy cost:
FindAll reduces the overall energy consumption by 30% for users
who re-find often, and does not increase the overall energy con-
sumption for users who do not re-find often. Adapting to the re-
finding behavior of users provides significant benefits. Non-adaptive
strategies do not change their indexing policies according to users
re-finding patterns; as a result, they index more often than needed
for users who do not re-find, resulting in up to 50% increase in
energy consumption compared to default web search. On the other
hand, they index less often than needed for users who do re-find
often, resulting in 39% lower availability compared to FindAll.

We make three key contributions in this work. First, our mea-
surement study presents the day-to-day browsing and re-finding
behavior of real mobile users and highlights implications for mobile
search. Second, we develop a local search engine that is suitable
for constrained phone environments: FindAll indexes web pages
within the memory constraints of phones and according to the en-
ergy implications of indexing. Third, we show using an extensive
evaluation, that FindAll improves both latency and availability of
mobile search.

2. BACKGROUND
2.1 The Re-finding problem

Re-finding is a well-studied topic in web search, where users issue
search queries for web pages that they have previously seen. Studies
have shown that 40% to 60% of all search queries from desktops are
re-finding queries [22, 10]. Even on mobile phones, 50% of mobile
users issue more than 80% re-finding queries [15]. In our own user
study, 52% of search queries were re-finding queries (§3).

Because of the dynamic nature of Internet content, re-finding is
not always easy— search results change constantly [5, 22], users
often do not remember the exact query they typed originally [6],
and the target web page may not be among the top web pages
returned by the search engine even when the same query is issued
repeatedly [24].

Poor cellular connectivity further exacerbates the re-finding prob-
lem. Users need to first download the search results page, search
for the link to the specific web page, and then re-download the web
page. High latency in cellular networks can make this experience te-
dious [15]. Even if web pages are cached locally, searching through
the history is cumbersome [4], and users seldom look through their
search history for re-finding [10].

A database lookup, consisting of a <query,webpage> map, could
make searching through the local history easier [15]. A database
requires that the original search query and the re-finding query be
the same, since the query is used as the lookup key. However, the
re-finding query is often different from the original query [23]. In
our study, the query used to re-find a web page was different from
the original query for 24% of the cases (§3). As aresult, FindAll was
27% more effective in searching web pages, compared to a database
lookup (§7).

Further, a database solution can only help retrieve web pages that
are found through search; if a user visits a web pages through other
sources such as social media and email, these web pages will not be
stored in the database.

2.2 Search engines

FindAll uses a state-of-the-art information retrieval system to
efficiently and effectively search through locally stored content.

Given locally stored content, a simple alternative to using a search
engine is to use keyword matching; i.e., every web page that contains
the keyword is retrieved, but results are not ordered in any manner.
Keyword matching is not effective for search. Imagine that the user
has tens of web pages about hotels in Anchorage, but the user is
looking for a particular hotel called Anchorage Hotel. A keyword
search on Anchorage Hotel will return all the web pages, in no
particular order. Finding the relevant web page from this unordered
list is cumbersome, especially in small form-factor phones that
display 3-4 search results per page.

Instead, search engines and most modern information retrieval
systems go beyond simple boolean search and rank web pages in
response to a user query. Search engines leverage several types
of features such as the frequency of the query words within the
document, the proximity of the query words, and their distribution
in various sections of the document (URL, title, body etc). Our
evaluations (§7) show that the FindAll is 33% more effective in
returning the relevant web page as one of the top results, compared
to keyword matching.

To retrieve and rank web pages efficiently, search engines first
index all of the web pages. The index comprises of a mapping
between words and the list of web pages in which they occur, and
allows fast retrieval. The core of any indexing algorithm is to sort
the <word, web page> tuple. Sorting is usually implemented as an

external-merge sort because the entire list of tuples is too large be
held in main memory [26]. However, this task is both memory- and
energy-intensive.

Finally, with the growing variety of mobile apps, re-finding is
likely to become a common phenomenon across other apps, such as
news readers, social media, maps, etc. As the number of re-found
content scales, a search engine solution is likely to become essential.
As a first step, we focus on re-finding web pages. This is because the
need for re-finding is well-established for web search, and browsing
remains a frequent activity for many mobile users; traces of mobile
browsing activity give us a basis for evaluating our system.

3. USER STUDY

To measure day to day browsing and re-finding patterns of real
mobile users, we conduct a user study. We built a logging application
that records anonymized user browsing history. We use the data that
we record during the study to drive the evaluation of FindAll.

3.1 Re-finding Defined

A re-finding query is the set of keywords entered by a user, used
to retrieve a previously viewed web page. We call the corresponding
web page that is visited through the query as the re-finding or the
re-found web page.

Knowing if a query is a re-finding query is a hard problem since it
depends on user intent. In the past, researchers have focused on re-
finding URLs. In contrast, in FindAll, we are interested in knowing if
the web page itself (i.e., the content of the URL) is re-found. Given
this goal, we define re-finding to be revisiting a previously visited
web page when:

e The web page is revisited via a search query.
e The content of the web page remains unchanged from the
previous visit.

Refinding example

URL:http://conferences.sigcomm.org/co-next/2012/

Search query: "conext 2012"
URL.: http://conferences.sigcomm.org/co-next/2012/

Search query: "networking conference nice france"
URL_: http://conferences.sigcomm.org/co-next/2012/

Non-Refinding example

Search query: "weather"
URL: www.weather.com

Search query: "weather"
URL: www.weather.com

URL.: http://wikipedia.org/wiki/J._K._Rowling

URL.: http://wikipedia.org/wiki/J._K._Rowling

Figure 7: Refinding and Non-refinding examples

Figure 7 shows examples of re-finding and non re-finding behav-
ior. For example, the CoNext 2012 web page is re-found twice.
Note that the search query is different for each re-find request. On
the other hand, the web-page for the URL “www.weather.com” is
visited twice but is not marked as re-finding even though it was

found via a search query. This is because the webpage is likely to
have changed since the previous visit. Finally, the wikipedia entry
for J. K. Rowling is not marked re-find because the web page is not
visited via a search query.

3.2 Measurement methodology

3.2.1 Logging software

The FindAll logger application records the user’s browsing ac-
tivity on their phones and personal computers. To encourage user
participation, the logger anonymizes the browsing logs of the user.
URLS of web pages are hashed using a user-specific key?, such that
two identical URLs are hashed to the same value. Similarly, search
queries are also hashed using a user-specific key.

On the phone, the application logs the following items: (i) Time
(i1) URL hash (iii) Hash of the search queries (iv) Size of the web
page (iv) Connection status (3G/WiFi). The logger uses the Android
bookmark database to log browser activity. We ensure that the logs
do not contain spurious URLs due to client-side redirections or due
to the user pressing the “back” button.

On the computer, the application logs the following items: (i)
Time (ii) URL hash (iii) Hash of the search queries. The logger
periodically polls the browser’s sqlite database to obtain browser
information. The same hash key is used to hash the content of the
user’s phone and user’s computer.

3.2.2 Data collection

We logged mobile browsing history from 23 users for 1 month.
In addition, we collected the computer browsing history from 7 of
the 23 users for a month to give us cross-device browsing history.
Table 1 shows the user characteristics. All except two of the partici-
pants were undergraduate or graduate students from two different
universities.

We note that 9 of the 23 users either had limited 3G plan or did
not have 3G plan at all on their phones. A system such as FindAll is
especially useful for such users.

Users Users
Undergraduate 13 Graduate students 8
Computer science 12 Other majors 9
majors
No 3G plan 4 Limited 3G plan 5

Table 1: Characteristics of user study participants.

During post-processing of the collected logs, we mark a query and
the corresponding web page visited through the query as re-finding,
if it satisfies the definition (§3.1). Note that we can identify repeated
requests to the same web page since the URLs are hashed to the
same value. However, we cannot access the content of the web page
because of anonymization; therefore, we cannot identify web pages
whose content has changed since the last visit. This is a difficult
problem.

However, to alleviate this problem, we created a list of URLs
whose content change frequently. We obtained the top 500 most
popular web pages from Alexa [1]. We then identify the web pages
that are “not cacheable”, as marked in their HTTP headers. The
FindAll logger software marks all web pages in the top 500 popular
pages that are “not cacheable", and these web pages are automati-
cally marked original (or non re-find).

“We employ one way hashing which does not allow original data to
be recovered even with the user-specific key.

1 1 24 1
0.8 0.8 0.8
L 06 . 06 L 06
a a a
O 04 O 04 O 04
0.2 0.2 Refinding only on the phone —+— 0.2 1
0 Refinding CDF =——t— o Refinding across devices —su— 0 Refinding CDF =
0 1 2 3 4 5 6 7 8 0 2 4 8 10 12 0 100 200 300 400 500 600 700 800 900
Number of refinds Number of refinds Minutes

Figure 1: CDF of re-finding pages for all
23 users. Over 52% of the web pages are

Figure 2: Re-finding when cross-device
indexes are used, for the 7 users from

Figure 3: CDF of the time between when
a web page is re-found and the first time

re-found. whom we collect cross-device indexes. the page is visited.
50 100

" 10000 > 45 Unique webpages mmmmm | > 90 Unique webpages

g 8000 ? a0l Refound webpages mmmmm | ? 80 Refound webpages
“5 @ @
= 6000 o r o
° <3 <3
9] 4000 & g
£ 8 g
E 2000 B 2
z g g
AT ET Y E
) 00 00 OQ OQ OQ OQ 00 00 \900 b4 =

° %% % % % % % %
Minutes User (sorted by number of webpages visited) Days

Figure 4: PDF of the time between when Figure 5: Browsing and re-finding statis- Figure 6: Browsing and re-finding statis-
a web page is re-found and the first time tics per user. The percentile bar shows tics of one user across all the days of the

the page is visited.

3.3 User Study Results

3.3.1 Re-finding across users

More than half of all visited web pages are re-found at least once.
Figure 1 shows the CDF of the number of times web pages are
re-found by the user; 0 indicates that the page is not re-found, 1
indicates that the page is re-found once, and so on. The figure shows
that 52% of the web pages are re-found at least once, and 25% of the
web pages are re-found two or more times. This finding is consistent
with previous studies that showed re-finding is wide-spread among
web search users [23, 15].

Re-finding increases when considering cross-device browsing
history. In Figure 2, we compare the cross-device re-finding charac-
teristics. For measuring cross-device re-finding, a web page visited
on the phone is marked as re-found if it satisfies the re-finding def-
inition, and is previously viewed either on the user’s computer or
the user’s phone. For the subset of 7 users with cross-device history,
the percentage of re-found web pages on the phone increases from
58% to 72%, when the web pages visited on the computer are also
included in estimating re-finding. This suggests that leveraging
cross-device history can provide substantial benefits for FindAll.

Most re-find occur either within the first 50 minutes or after 10
hours. Figure 3, shows the time difference between the first visit
to a web page and subsequent visits to the same web page. About
45% of the time, re-finding occurs within the next 50 minutes; a
further 20% of the time, web pages are accessed no sooner than 900
minutes after the web page was first visited. (Note that the figure
is cropped at 900 minutes.) Figure 4 shows the probability density
function of the same data. Taken together, the figures show that web
pages need to be indexed relatively soon after a user visits them, to
improve availability.

3.3.2 Diversity in browsing and re-finding

Next, we focus on the re-finding behavior of individual users.
Figure 5 shows the browsing and re-finding characteristics for each

the 25th and 75th percentile.

experiment.

CDF

Query Length CDF ———

0 L
0 1 2 3 4 5 6 7

Number of terms in query

Figure 8: The CDF of the number of terms in a user query.

of the 23 users. The figure shows the median number of web pages
browsed by the user.

Three important characteristics emerge from this graph: 1) Users
have varied browsing characteristics. While 33% of the users browse
more than 15 web pages a day, 30% of the users browse less than
3 web pages per day. 2) The re-finding characteristics vary for
different users. For 8 of the 23 users, nearly half of the web pages
are re-found web pages, but for 6 of the 23 users, less than 10%
of the web page visits are re-finding visits. 3) Even for a given
user, browsing behavior varies across different days. The percentile
bars shown in Figure 5 are the 25th and the 75th percentile of
browsing behavior for a user, and their difference shows that there
is significant variability.

3.3.3 Per user browsing and re-finding patterns

Re-finding percentage is consistent for a given user, despite daily
variability in browsing patterns. Figure 6 shows the browsing and
re-finding behavior across the 30 days for a single, example user.
While there is a large variability in browsing patterns for a single

user, the re-finding percentage does not vary greatly across days.
For the user in Figure 6, the average re-finding over the 30 days is
47% with a standard deviation of only 9%. Analyzing our data, we
find that the re-finding percentage is fairly consistent across days
for most users.

3.3.4 Query characteristics

Figure 8 shows a CDF of the number of terms in each user query.
40% of the queries contain more than 2 terms, with a maximum of 7
terms in a query.

More interestingly, we find that for 24% of the re-find queries,
the original query and the re-find query were different (not shown in
figure); two queries are different if at least one term in the query do
not match. Two queries with the same terms but in different order
are considered to be the same.

This finding is consistent with previous studies on the search
characteristics of desktop users, which also showed that the original
query and re-find query are often different [23].

3.4 Summary

We find two key characteristics of mobile re-finding behavior that
have implications for the design of FindAll:

1. Nearly 45% of web pages are re-found in the first 50 min-
utes. This motivates the need for a local search engine solution that
indexes web pages as soon as they arrive, to improve availability.

2. Users have diverse but consistent re-finding patterns. Since
some users may seldom re-find web pages, FindAll learns the re-
finding pattern of users, so that the energy-intensive indexing opera-
tion is performed only if there is associated benefit.

We note that the aggregate findings from our user study are con-
sistent with findings of a much larger re-finding study using 8000
Bing mobile users [18]. The Bing study also shows that: (1) mobile
users exhibit high re-finding behavior, and (2) users have diverse
re-finding characteristics. In addition, our study characterizes non-
aggregate day-to-day behavior of mobile search users. For example,
we learn that user’s show consistent re-finding behavior across days,
that a large fraction of re-finding occurs soon after the original
search, and that user’s often re-find across devices. We also charac-
terize the query term distribution of mobile search queries.

4. FINDALL

FindAll is a local search engine designed specifically for mobile
phones.

4.1 Goals

The two main goals of FindAll are: (i) to increase local availability
of web pages, and (ii) to operate within the memory and battery
constraints of phones.

We say that a web page is available locally, if the web page
has been indexed locally and can be retrieved from the local cache
when the user issues a re-find request. Increasing local availability
provides multiple benefits: (1) It enables users to re-find more web
pages easily by searching through a smaller collection of locally
available web pages. (2) It reduces search latency and reduces the
use of expensive 3G data, by avoiding repeated downloads of web
pages from the Internet.

In terms of resource constraints, memory and energy are the two
most limited resources on mobile phones. We design FindAll such
that it consumes no more energy than default; the default in our case
is Internet-based web search. With respect to memory, we design
the FindAll indexing algorithm to write to disk frequently, to avoid
overflowing available memory.

Next, we discuss the FindAll architecture and challenges.

4.2 Architecture

Figure 9 shows the FindAll architecture. FindAll stores web pages
as a user downloads them, and then indexes them in blocks. FindAll
stores both the index and the cached web pages on its external
memory card.

When a query is submitted to FindAll, it runs the retrieval algo-
rithm on the index. The algorithm returns a results page with a set
of links, similar to search engines such as Google or Bing. When
the user clicks on one of the links, the corresponding web page is
fetched from the local cache. If the results page does not contain any
link or if none of the links are relevant to the user, the user switches
to Internet-based search.

FindAll also indexes web pages on all other devices that the user
browses, such as their laptop and desktop computers. When the
phone is being charged, FindAll downloads the cross-device indexes
on to the phone and merges them with the existing index. FindAll
also downloads the corresponding web page cache to the phone.

4.2.1 Partial indexes

Traditionally, search engines use static indexing, which are de-
signed to index large collections of documents in one-go. However,
static indexing approaches cannot effectively handle the frequent up-
dates necessary for maintaining high-availability in FindAll’s local
search engine.

Therefore, we implement a dynamic indexer that is designed for
handling frequent updates [17]. Our implementation builds partial
indexes of smaller blocks of web pages in main memory. Partial
indexes allow for web pages to be indexed as they arrive, increasing
the local availability of a web page. The partial indexes are then
merged periodically.

Maintaining the partial index in memory is more energy efficient,
as merging partial indexes that are in-memory requires less energy
and compute resources. However, because of the severe memory
constraints in phones, FindAll writes the partial indexes to disk as
soon as they are created. To illustrate the memory constraint in
phones, consider the following example. The HTC thunderbolt
phone, released in 2011, has around 800 MB RAM. However, only
240 MB is available for applications. In our experiments, indexing
50 web pages and maintaining the index in-memory resulted in the
phone running out of memory. In this instance, no other application
was using the memory. In the presence of multiple background
applications, the number of web page indexes that can be maintained
in memory becomes even less.

As a consequence of not maintaing in-memory partial indexes,
FindAll incurs higher energy costs due to merging. We note that
it is essential that the partial indexes be merged; as the number of
partial indexes grow, the retrieval latency increases, because the
retrieval algorithm needs to search through each partial index. Our
experiments show that, as the number of partial indexes grow, the
retrieval latency becomes higher than the latency of downloading
from the Internet, thus reducing the benefits of a local search engine.

4.2.2 When to index?

FindAll buffers downloaded web pages and indexes them as a
block. The central question in FindAll’s architecture is in deciding
when to index the buffered web pages.

On the one hand, indexing in smaller block sizes improves local
availability and consumes less energy by reducing number of Inter-
net downloads. On the other hand, indexing in smaller block sizes
consumes more energy during indexing due to the need for frequent
merging of the partial indexes.

To understand the trade-off between indexing small block sizes
vs indexing large block sizes, we conduct a simple experiment.

Ranked list of
web pages

Phone Query

Partial Index

HEE

: Ld Cached web page\sh

FindAll
Retriever

| e R
Temporary [t M—
web page store
—t)
|
Downloaded
web page Computer Indexes Cached web pages

= ——
- =

Figure 9: FindAll local search engine

=

We index 90 web pages obtained from the Microsoft Search logs,
with a total size of 12.3MB. We adapt a publicly available search
engine called Galago [2] to index the web pages. We conduct all our
energy measurement using the Monsoon Power Monitor [3] using a
Motorola Droid phone. All network activities are conducted on the
3G interface.

Figure 10 shows the trade-off between the index energy and
availability. The x axis shows the block size; a block size of 15
implies that indexes are created when 15 web pages are downloaded.
The left y axis shows the energy required to index the web pages;
indexing all the 90 web pages together consumes only 52 Joules,
while indexing in block sizes of 15 web pages require 140 Joules, a
nearly 3-fold increase. This is because of the additional energy cost
incurred due to merging.

We then assume that 20% of the search queries are re-finding
queries, uniformly; note that this is a conservative estimate. The
right y axis shows the energy cost of not indexing (i.e., the cost to
download the search result from the Internet) for different block
sizes. For example, if we wait for all 90 web pages to be downloaded
before indexing, 18 re-found web pages will need to be downloaded
from the Internet because they are not available locally. Clearly,
there is an optimal block size that balances the two opposing goals.

In the next section, we describe how FindAll estimates when to
index a block of web pages, to balance its twin goals of availability
and energy.

S. FINDALL INDEXING ALGORITHM

The FindAll indexing algorithm decides when to index a set
of buffered web pages. The goal of the indexing decision is to
maximize local availability, while ensuring that FindAll consumes
no more energy than default search.

Figure 11 shows the FindAll indexing algorithm. FindAll makes
indexing decisions by comparing the expected energy cost of index-
ing web pages (E[I]) and the expected cost of not indexing web
pages (E[—I)).

e The cost of indexing web pages (E[I]) includes the cost of
indexing the current block of web pages, as well as a penalty

250 " 250
200 {200 5
2 >

o

3 150 | {1150 &
Q c
c [}
o T
x 100 4 100 =
[} ()
2 5
= j7)
50 Indexing —+— | 5

Retrieval —p—

. . . 0
0O 10 20 30 40 50 60 70 80 90

Block size

Figure 10: Experiment that shows the trade-off between avail-
ability and indexing energy.

based on expected cost of indexing future web pages. The
penalty is designed to penalize indexing of small block sizes.

e The cost of not indexing web pages (E[—I]) is simply the
energy required to search and download each web page from
the Internet; in other words it is the energy required for default
web search.

FindAll will decide to index a block of web pages, if the cost of
indexing (E[I]) is lower than the cost of using default web search
(E[—I]). Next, we describe the estimation of E[I] and E[—I].

5.1 Expected cost of indexing (£[1])

We estimate indexing cost as the sum of the current indexing cost
and a penalty. The penalty is the estimated impact of the current
indexing decision on future indexing operations.

The penalty is designed to discourage indexing small blocks,
which can lead to more merge operations in the future. Specifically,
if FindAll decides to index a block of B web pages, it estimates the
cost of indexing future web pages, as if all future pages are also
indexed in blocks of size B. The penalty is then computed as the
energy to index future web pages normalized over the total number
of blocks. Our evaluations (§7.4) show that this simple heuristic
for penalty estimation provides a good balance between availability
and energy, compared to alternate indexing strategies that do not
penalize indexing in small blocks.

5.1.1 Energy for indexing and merging

The energy spent in indexing a block of B web pages is the sum
of the energy to index the block and then merge the partial index
with the existing index. Let the number of bytes in the block of B
web pages be denoted by | B| and number of bytes in the existing
index be denoted by |P|. The value of | P| is known. Then,

Expected energy to index/merge B web pages =
Energy to index | B| bytes
~+Energy to merge indexes of sum size | B| 4+ | P| bytes (1

We use a simple linear model to estimate the energy to index and
merge web pages of a certain size. To this end, we index web pages
of various sizes (without merging) from 0 to SMB in 200K intervals,
and fit a linear model to the data. This allows us to compute the
energy to index web pages for a given number of bytes. Similarly,
we build a linear model to estimate the energy to merge two indexes
of a given sum size.

5.1.2 Penalty

To penalize energy decisions that index in small blocks, we as-
sume that the remaining web pages for the day will also be indexed
using a block size of B.

Suppose that there are W additional pages that the user will
download during the day *. Then the penalty for indexing the
remaining W web pages in blocks of B is given by:

B .
Penalty = W X {% x Energy to index |Bl bytes +
Energy to merge * partial indexes})

We note that % is the normalization/amortization factor.
The expected cost of indexing a block of B web pages is then

given by:
E[I] = Expected energy to index/merge B web pages + Penalty (3)

5.2 Expected cost of not indexing (E[-1))

To estimate the cost of not indexing a block of web pages, FindAll
first estimates the probability that a web page will be re-found.
We first describe how FindAll estimates this probability, and then
describe the estimation of E[—1].

5.2.1 Predicting re-finding probability

FindAll uses the re-finding patterns of users to estimate the prob-
ability that a web page will be re-found. To this end, we build an
online classifier, which when given a web page and the time of eval-
uation, estimates the probability that the web page will be re-found
in the next 7" time units. The variable 7" is the same time interval
used by the FindAll indexing algorithm (Figure 11).

Features:.
We use three features to train our classifier:,

e Base re-find probability — The fraction of user requests that
are re-find requests. This feature encodes the intuition that
if the user re-finds often in the past, then she is likely to
re-find often in the future. Recall that the user’s refinding
patterns remain consistent across different days (§3.3.3), and
is therefore a consistent signal for re-finding. This feature
takes fraction values between 0 and 1.

e Session features — Is the user currently in a browsing session?
The intuition for this feature is that, if the user is not currently
in a browsing session, then it is unlikely that the user will be
browsing, and in turn, it is unlikely that the user will re-find
webpages. The session feature takes a binary value of O or
1, depending on whether the user is in a browsing session or
not.

e Download history of the page — Has the web page been re-
found recently? The intuition is that if the user recently re-
found a web page, then it is likely that the user will re-find
the web page again [23]. The download history feature takes
a binary value of 0 or 1, depending on whether the web page
has been re-found recently or not.

Classifier training:.

To train the classifier, we use half of the data we collect from each
user in our user study. Starting from the beginning of the trace, we
gather all web pages that were downloaded in each 7" time unit. We
assign labels to each web page in this set: re-find if the web page
was indeed re-found in the next " time units; not-refind otherwise.

3FindAll keeps track of the average web pages browsed per day to
estimate W.

1. If new web page is downloaded by the user, store in
temporary buffer B

(a) If this is the first page in the buffer, set a timer T’

2. When timer goes off

(a) If E[I] < E[-I], where E[I] is the expected in-
dexing energy, and F[—1] is the expected cost of
not indexing in the next 7" minutes, then

o Index buffer B, empty the buffer, and cancel
the timer.

3. If phone is being charged && B is not empty

(a) Index buffer B, empty the buffer, and cancel the
timer.

Figure 11: FindAll indexing.

The process is repeated for each T interval to obtain a set of labeled
instances. Each of these labeled instances are represented using the
the three features described above.

We learn a logistic regression classifier; the goal of the classi-
fier is to minimize classification errors on this training data. On
its completion, the learning algorithm outputs a set of weights cor-
responding to each feature. At each time instance, the re-finding
probability of a web page is computed as the weighted sum of each
feature value at that time instance. As previously noted, the weights
for the weighted sum computation are obtained from the learning
algorithm.

The classifier only needs to be trained once a day during periods of
inactivity or when the phone is being charged. Since the prediction
only involves computing a weighted sum of feature values, there is
little energy consumption for the prediction.

Our prediction algorithm used only three simple sets of features;
our evaluations show that FindAll is able to use the predictions
to avoid indexing web pages for low re-find users (§7.4). Due to
the privacy preserving nature of the data collection, we did not
use any text based features in our prediction algorithm. An actual
implementation of the system, however, will have access to the
queries, the URLs and the text of the web pages. Such a system can
use several textual features, further improving the prediction.

5.2.2 Estimating cost of not indexing

Given our estimates of the re-finding probability, we first make a
simplifying assumption that the re-finding probabilities of each web
page is independent. Then, given a block of B web pages, the cost
of not indexing each web page w € B is the energy to search and
download web page w, if w were re-found. Therefore,

E[-I] = Z Energy to search and download w x
weB
Probability(w will be re-found))

To estimate the energy to search and download w, we build a
simple model, similar to the one described in [11]. We download
web pages of varying sizes over 3G, and measure the power con-
sumption using the Power Monitor [3]. We use the measurements to
build a linear model of energy consumed to download a web page
or a search result page of a given size. Similarly, we model the
energy consumption over WiFi links. FindAll determines the energy
consumption to download the search results page and the web page,
based on the network in which it is currently operating.

6. IMPLEMENTATION

We implement FindAll on the Android operating system. The
search engine is adapted from the publicly available Galago search
engine [2]. We implement dynamic indexing in Galago to allow
blocks of web pages to be indexed into partial indexes. We use the
machine learning tool Weka [13] to perform our classifications.

Although we implement FindAll over Galago, the indexing strat-
egy is agnostic to the search engine. FindAll provides a strategy for
creating partial indexes of <word, web page> tuples and merging
the indexes in a constrained environment. Any dynamic indexer will
need to perform similar indexing and merging activities.

The FindAll indexer is implemented as a service on Android, and
it periodically indexes web pages, according to the algorithm in
Figure 11. We set the time interval 7" to 5 minutes; i.e., FindAll
makes indexing decisions every 5 minutes. This ensures that web
pages frequently get a chance to be indexed.

Both the cached web pages and the indexes are stored in the
memory card. When the user issues a query to FindAll, it searches
over its local index and returns a search result page with links. When
a user clicks on the link, the locally cached web page is retrieved.
If the web page is not indexed, FindAll falls back to default search,
and retrieves the search results from the Internet.

FindAll also indexes web pages on the user’s computers. When
the phone is being charged, the FindAll software on the phone
downloads the computer indexes (and the corresponding cached
web pages) on to the phone.

In the current version of our implementation, we assume that
the user specifies if the query is a re-find query. If it is a re-find
query, then the FindAll system retrieves the web pages locally; else
the web pages are retrieved from the Internet. A mechanism for
automatically determining if a query is a re-find request will further
enhance the usability of FindAll.

We conduct all our evaluations using this FindAll implementation
using a Motorola DroidX phone. The phone has both a WiFi and a
3G interface, and uses Verizon as the cellular provider.

7. EVALUATION

Our evaluations aim to show that

e FindAll improves local availability of web pages and as a
result, decreases search latency and 3G data usage.

o FindAll’s local availability benefits do not come at an energy
cost.

e Compared to alternate indexing strategies that either always
index or use the cloud for indexing, FindAll’s indexing strat-
egy is more energy efficient and improves availability.

e FindAll’s index-based search significantly improves search ef-
fectiveness compared to keyword matching or using a database
lookup.

7.1 Evaluation methodology

We use the browser logs collected during the user study to evalu-
ate FindAll. Our user study collects the time when the user issues a
query or requests a web page, the hash values of the query/web page,
and the size of the subsequent download. Recall (§3.2.1) that we
perform an offline analysis to mark each query/web page as re-find
or not re-find. For our experiments, we assume that this marking
represents the user specifying whether a query is a re-find query or
a first-time query. All direct web page visits, that are not reached
through a search query, are always marked non re-find.

Since the traces only contain hashes of the search queries and
visited web pages, we map these hashes to real queries and web
pages. For each <query hash, web page hash> pair in our logs,

we pick an appropriate <real query, real web page> pair from the
Microsoft search query logs obtained from Microsoft Live Labs *.
To perform the mapping, we keep track of the different re-find
queries used to search the same web page, both in our traces and in
the Microsoft search logs. This allows us to map different variations
of queries in our log to different variation of the real queries; recall
that 24% of the re-find queries in our logs were different from the
original query. Clearly, the same query/web page hash in our logs
are mapped to the same query/web page in the Microsoft logs.

To emulate the search session, we replay the log traces. For web
pages in the trace that are not reached through a search request,
we directly download the web page from the Internet. For other
requests, we do the following:

Default search: For each search query, we submit the query
to Google, download the search results page, and subsequently
download the web page(s) visited by the user through the search
query.

FindAll: For each search query marked re-find, we submit the
search query to FindAll. FindAll searches the local cache and returns
a search results page. If the FindAll search is successful, then the
results page will contain links to the web pages subsequently visited
by the user. These are then fetched from the local cache. If FindAll
is unsuccessful, either because the page is not indexed/cached yet
or if the search algorithm could not retrieve the relevant web page,
then we fall back to default search. If the search query is marked
non re-find, we use default search to retrieve the web pages.

As the search session is played, FindAll indexes web pages ac-
cording to the implementation (§6). The first half of the user’s log
is used for training FindAll’s prediction algorithm. We conduct our
experiments using the second half of the logs. We assume that the
users use the 3G network for all their interactions. Unless specified,
we do not use the cross-device indexes and only use the mobile
indexes for search.

7.2 FindAll benefits

FindAll trades storage for Internet connectivity to improve local
availability. Figure 12 shows that FindAll often retrieves web pages
from the local cache, without requiring Internet connectivity: For
6 of the 23 users, FindAll retrieves over 40% of the web pages
locally. We call these users high re-find users. FindAll improves
local availability by an average of 20% for the remaining users.

Improving local availability reduces the need for downloading
web pages from the Internet, resulting in two key benefits: (1)
reduced search latency, and (2) reduced 3G data usage.

FindAll reduces search latency by 2-folds for high re-find users.
Figure 13 shows that at its best, FindAll reduces per request retrieval
latency from 3.35 seconds to 1.65 seconds. As can be expected,
FindAll does not provide uniform improvements for all users; Find-
All provides less than 10% latency improvement for 5 of the 23
users, due to the low re-finding behavior of these users.

FindAll reduces search latency by over 3-folds when using cross-
device indexes. Figure 14 shows that when browsing logs from all
of the user’s devices are cached and indexed, the local availability
increases even further, reducing the search latency by over 3-folds
compared to default search, for certain users.

FindAll reduces 3G data usage by up to 100 MB a month for
high re-find users. Figure 15 shows the savings in 3G data usage
compared to default web search. On an average, FindAll saves 80
MB of 3G data a month for the 6 high re-find users. For one user,
the 3G savings is 100 MB a month. If the user has a 500 MB limit
on their 3G data plan, a 100 MB savings translates to 20% of the

“The search logs are available to research labs, but are not available
online.

-

Findall availability

P
~o

PRNOANONOOBRBBR L
NwbhOo

0.8

0.6

0.4

0.

N}

Frac of pages retrieved locally

(=}

11|
BERNE

User

Figure 12: Benefits: FindAll increases
availability by retrieving web pages from
the local cache for over 30% of search
queries for 10 of the 23 users.

.
N}
o

FindAll 3G Savings mmmmm

PROANONOOSREBRRE B ENNNN
whroo ©ORN®

©
o

3G savings per month (MB)
w (o2}
S o

=)

-
1%

User

Figure 15: Benefits: Improving local
availability results in considerable sav-
ings in 3G data usage, that is especially
important given tiered data plans.

Default search
FindAll s

Avg latency per request (s)

PNWAUO~N®O

Figure 13: Benefits: Increasing availabil-
ity results in lower search latency com-
pared to default search. At its best case,
FindAll reduces latency from 3.35 to 1.65
seconds.

10

Default search s
FindAll

Energy per request (J)

PNWAUIO~N®©O

Figure 16: Cost: FindAll’s latency and
3G savings does not come at an energy
cost. In fact, FindAll reduces energy con-
sumption by 30% for high re-find users.

Default search
5 FindAll: Only mobile indexes
FindAll: Using cross-device indexes 55

Avg latency per request (s)

Figure 14: Benefits: Using cross-device
indexes that combines browser history
from all devices of a given user, further
reduces search latency by up to 3-folds
compared to default search.

2

Storage requirement m—
16+

12
0.8 -

0.4 -

Index + Web page cache (GB)

0

Figure 17: Cost: FindAll’s storage re-
quirements, even when indexing across
all of the user’s devices, is considerably
lower than current memory card capaci-

user’s 3G limit. As carriers impose stricter 3G caps and introduce
tiered payment plans [21], 3G savings using a local search engine
will become more and more attractive to users.

7.3 FindAll costs

FindAll’s benefit with respect to availability, latency, and 3G data
usage, does not come at an energy cost. To perform the energy
experiment, we run the user trace on the phone for both default
search and FindAll, as before, and measure the power consumption
using the Monsoon Power Monitor [3]. The power monitor provides
accurate energy measurements by sampling the current drawn from
the battery with a frequency of 5000 Hz.

FindAll reduces the energy consumption by 30% for high re-find
users. We first note that our goal in FindAll’s design is to ensure
that the energy consumption of FindAll is no more than that of
default search. Figure 16 shows that FindAll in fact saves energy by
retrieving web pages locally. For the 6 high re-find users, FindAll
reduces the energy consumption by over 30%. More importantly,
even for users who do not re-find often, FindAll does not increase
overall energy consumption.

FindAll’s energy benefits are primarily due to its indexing algo-
rithm; FindAll takes into account the re-finding patterns of each user
before making an indexing decision. We show in §7.4 that, instead,
if web pages were indexed as soon as they arrive, a local search
engine will consume significantly more energy compared to default
search.

FindAll’s storage requirements are modest. Figure 17 presents
the storage requirement for FindAll’s indexes and cached web pages
for 30 days. We present the storage requirement for the 7 users for
whom we store cross-device indexes; these users have the largest
storage requirement (the remaining users had a storage requirement

ties.

of less than 0.3 GB per month). At its maximum, the storage
requirement for FindAll is less than 1.9 GB; most phones have
external memory cards that have a capacity of 64 GB or more. Thus,
a 1-month index occupies only a small fraction of the available
storage.

7.4 Comparing with alternate indexing strate-
gies
FindAll balances availability and energy cost using its indexing
algorithm. At its core, FindAll determines when to index a block of
web pages by predicting the users re-finding behavior. Below, we
compare FindAll’s indexing strategy with 4 alternate strategies.

o Always-Index: Indexes every web page as soon as it is down-
loaded (i.e., the block size is always 1).

o Cloud-Index: Indexes web pages in the cloud and periodically
uploads the incremental indexes to the mobile.

o Fixed-Block-Index: Indexes web pages in fixed-sized blocks.

o Never-Index: No indexing; default search.

For clarity, we present the results of our experiments for a subset
of 6 users, two users in each of the three categories: High re-find
users, for whom 40% or more web pages are retrieved locally,
Medium re-find users, for whom 15% to 25% of web pages are re-
trieved locally, and Low re-find users, for whom less than 10% of the
web pages are retrieved locally. We also repeated the experiments
for the remaining users and found the results to be qualitatively
similar (not shown here).

When using the Cloud-Index strategy, we upload data from the
cloud every 30 minutes; when using Fixed-Block-Index strategy,
we index documents in block sizes of 5 web pages. We evaluated

150 03
FindAll

Always index 0.25
Fixed-Block-Index s |

100 Cloud-Index

0.2

50 0.15
E 0.1
I I 0.05

IS
Fraction unavailability

% energy diff compared to search

Fixed-Block-Index

FindAll m— 200

Cloud-Index ———1

FindAll

Always index T
Fixed-Block-Index mmmmm
Cloud-Index ———

@
o

3G savings per month (MB)
@ =]
S S

High Re-find Medium Low Re-find

High Re-find
Users Re-find Users Users 9

Figure 18: Comparing energy cost: The Figure 19:

Medium
Users Re-find Users Users Users

{1 “ i -
L Il J
Medium Low Re-find

Re-find Users Users

J J L
Low Re-find High Re-find

Comparing unavailability: Figure 20: Comparing 3G saving bene-
Always-Index strategy consumes consid- The Cloud-Index strategy

is up to fits: The 3G savings of the Always-Index

erably more energy compared to default, 67% more unavailable, and Fixed-Block- strategy is only 5% better than FindAll,
for all users. The Cloud-Index and Fixed- Index strategy is up to 39% more unavail- even though it has 0 unavailability. Find-
Block-Index strategies consume more en- able compared to FindAll for high re-find All provides more 3G savings than Cloud-
ergy compared to default search for low users. High unavailability will result in Index and Fixed-Block-Index strategies

re-find users.

other upload periods and block sizes, and chose these values as they
provided the best energy and availability trade-off.

All alternate indexing strategies consume significantly more en-
ergy compared to default search.. Figure 18 compares the in-
crease/decrease in the percentage energy consumption compared
to default search. The Always-Index strategy has the worst energy
characteristics, and at its worst, incurs a 140% increase in energy
consumption compared to default search. For low re-find users, all
three alternate indexing strategies perform worse than default search
with respect to energy. This is because, the alternate strategies do
not adapt to the user’s re-finding patterns, and instead index web
pages even if the user is unlikely to re-find. For low re-find users,
indexing web pages do not provide any energy benefit, resulting in
a net energy wastage. In contrast, FindAll does not index often for
low re-find users, reducing its energy consumption.

At its peak, the absolute energy difference between the Always-
Index strategy and default search is 140 Joules (not shown in figure).
Going beyond web search, this difference will become even more
significant as local indexes are used to retrieve content for other
apps. For example, we repeated the above experiment using the
desktop search history from our logs; users download considerably
more web pages on their desktops than on their mobile phones.
The absolute energy difference between Always-Index and default
search when using desktop logs increased to 960 Joules.

FindAll improves local availability compared to Cloud-Index and
Fixed-Block-Index strategies. Figure 19 compares the unavailability
across the different indexing strategies. We define unavailability as
the fraction of time user issues a re-find query, but the corresponding
web page is not available in the index. For high re-find users, the
indexing frequency of Cloud-Index and Fixed-Block-Index strate-
gies are too low; as a result, several re-find queries are not satisfied
locally. The unavailability of the Always-Index strategy is 0, since
the web pages are indexed immediately. Although the Always-Index
strategy has lowest unavailability, we see next that its benefits are
only slightly better than that of FindAll.

FindAll saves significantly more 3G data compared to both Fixed-
Block-Index and Cloud-Index strategy. Recall that one of FindAll’s
benefits is that it reduces 3G data usage compared to default web
search by retrieving web pages locally. Figure 20 shows that by
reducing unavailability, FindAll substantially improves 3G savings
compared to the Cloud-Index and Fixed-Block-Index strategies. The
Cloud-Index strategy performs especially poorly with respect to 3G
data usage because it uploads indexes periodically through the cloud.

lower latency and 3G saving benefits.

by improving availability.

For low re-find users, we omit the 3G savings using the Cloud-Index
strategy, because the Cloud-Index strategy uses more 3G data than
default web search. More importantly, even though the Always-
Index strategy has O unavailability, it only saves 3G data usage by
an additional 5% over FindAll.

7.5 FindAll vs Keyword matching vs Database
lookup

Next, we compare FindAll with two alternate search techniques:
(i) Keyword matching: Returns all web pages that contain the query
terms in no particular order, and (ii) Database lookup: Stores already
seen web pages in a database, as <query, web page> pairs. Web
pages are retrieved by using the query as the key.

7.5.1 Search effectiveness

The effectiveness of a search engine depends on whether the
search results contain the relevant web page that the user is searching
for. This is especially true in mobile phones where only 3-4 search
results can be presented on the screen. If the relevant web page is
returned as, say, the 20th search result, the user has to scroll through
multiple screens before finding the relevant page.

In Figure 21 we ran the three alternate strategies, and counted the
number of times the relevant web page was within the top 3 search
results. The relevant web page is the page the user eventually clicks
on, and we obtain this information from our logs. FindAll returns
the relevant web page 96% of the time within the top 3 search results,
compared to 64% when using keyword matching, and 71% when
using database lookup.

The database lookup fails to return the relevant web page if the
original query and the re-find query are different. Recall (§3) that
the re-find query and the original query are different for 24% of
the queries in our log. For a small percentage of cases (8%), the
database lookup failed to return the relevant web page because the
original web page was not retrieved through a search query. This
can happen, for example, if the user visits a web page originally via
social media but wants to re-find the web page later through search.
Keyword matching is not effective in searching for a specific web
page, since it returns every web page that contains the query terms.

7.5.2 Performance under no connectivity

To understand the importance of search effectiveness, we conduct
experiments in a simulated no connectivity environment. One of the

FindAll s
Database mmm—
Keyword-matching rzseszs

0.8

0.6

0.4

Search effectiveness

0.2

Figure 21: FindAll returns the relevant web page 96% of the
time within the top 3 search results, compared to 64% when us-
ing keyword matching and 71% when using database lookups.

1

FindAll mmm
08 L Database mmmm |
0.6 |
0.4 |

0.2 -

Fraction of web pages retrieved

0

Figure 22: FindAll doubles the number of web pages that are
retrieved even in the absence of connectivity, compared to using
a database lookup.

main advantages of a local search engine is that web pages can be
retrieved even when there is no connectivity.

Figure 22 shows the percentage of web pages retrieved if we
assume that there is no connectivity for 50% of the trace for each
user. We randomly choose the periods of no connectivity and repeat
the experiment 5 times with different seed values. We present the
average. Note that this scenario is not far fetched; 4 of the 23 users
in our user study did not have a 3G data plan. Such users may not
be connected to the Internet for large parts of their day.

We present the results for the 6 high re-find users. FindAll re-
trieves the relevant web page for 35-40% of the search queries
even when there is no connectivity. In contrast, search using a
database lookup only returns the relevant web page for 20% of the
search queries. This is a direct consequence of the poorer search
effectiveness of a database lookup.

8. RELATED WORK

Our work is inspired by several related research efforts. Below
we contrast our work from existing work.

8.1 Local database

The Pocket Cloudlets [15] work explores storage architectures
that allow mobile phones to trade-off connectivity for local storage.
The goals of FindAll allign well with the goals of Pocket Cloudlets.
The core idea in Pocket Cloudlets is to store the search results
page in a local database and use the query as the key to the lookup
database. The search results are retrieved in response to a query
using the database lookup; however, the web page itself is not stored
locally. The web page needs to be re-downloaded from the Internet.
The goal of PocketCloudlets is to only eliminate the latency in
retrieving the search results page, and not the web page itself.

The database lookup cannot retrieve the web page if the re-find
query is different from the original query. FindAll uses a full blown
search engine; as a result, FindAll works even if the re-find query

terms are different from the original query terms (§7.5). In addition,
FindAll stores the web pages in the phone, so that they can be
retrieved locally, unlike PocketCloudlets. This results in additional
benefits with respect to latency and 3G data savings.

PocketWeb [18], a system built on top of the PocketCloudlets
system, dynamically updates web pages stored in the mobile cache,
by learning the browsing behavior of users. The goals of PocketWeb
is complimentary to the goals of FindAll. In the current implementa-
tion of FindAll, the web pages stored in the cache are not refreshed.
Periodically refreshing the local web pages using a PocketWeb-like
system can further increase the utility of FindAll.

Finally, the authors of PocketWeb [18] and PocketCloudlets [15]
conduct a mobile user study using Bing search logs. In an earlier
section (§3), we detail the similarities and differences between these
studies and the FindAll study.

8.2 Cloud solutions

Several commercial solutions allow users to search through their
history, or sync the browser history across devices. For example,
search engines such as Bing and Google provide a history feature
that allows (logged-in) users to search through their search history.
The search engines store the history in the cloud. The Chrome Sync
feature on the chrome browser allows users to sync all the URLs
they visit, across their devices. The Chrome Sync feature augments
search, but the user still needs to connect to the Internet to retrieve
the web page.

The search engine and the chrome browser solutions require that
the user have good Internet connectivity, whereas FindAll operates
even when connectivity to the Internet is poor or unavailable. Fur-
ther, FindAll allows users to store their search history under their
own control, alleviating some of the privacy concerns of letting a
search provider store the history.

8.3 Cache-based approaches

Browser history and bookmarks store a link to a web page previ-
ously downloaded by the user. To re-find a web page, the user has
to manually browse through the history, which is tedious on mobile
phones.

Similarly, Web caching solutions [9, 8, 12, 28] store a copy of the
web page locally, to reduce latency and improve performance of web
browsing. However, web caching can be leveraged for re-finding
only if the user has a link to the URL; usually users do not remember
the URL. Some browsers such as Opera and Safari cache URLs and
match new URL requests character by character to cached ones, to
provide hints to users. However, even these solutions require that
the users remember partial URLs. Further, previous research has
shown that users rarely look through their history or their cache to
re-find web pages [10].

8.4 Cross-device synchronization

The Dessy system [16] is a mobile desktop search system. Dessy
indexes files across multiple devices and uses the mobile phone
to search through the index. The authors build the search engine
indexes in the cloud and upload the index to the mobile phone.
Instead, FindAll implements a search engine locally on the phone,
and we show that the local index performs better than a cloud-based
index.

Finally, FindAll goes beyond search—FindAll indexes all web
pages that the user downloads; not just those found through a search
engine. Today, a large proportion of browsing activity originates
from social networking apps and emails. Say, Bob reads an article
that he finds through facebook, and wishes to re-find this article.
The search engine or a database lookup will not have stored this

article because it was not found through search. However, FindAll
indexes all web pages, and therefore can retrieve the article for Bob.
The search interface in FindAll can also potentially leverage the
re-finding characteristics of other apps, including social networking
apps, maps, and movie databases.

Similarly, FindAll is useful not only to re-find previously viewed
web pages, but also to search within previously viewed web pages.
For example, a user searching for hotels in Alaska may want to look
for “Valet Parking” within the hotels that she previously viewed. By
building an index, FindAll allows users to issue new queries to their
local cache.

9. CONCLUSIONS AND FUTURE WORK

In this work, we developed FindAll, a local search engine that
supports re-finding on mobile phones. To aid with its design and to
better understand mobile re-finding, we conducted a user study with
23 users over 30 days. The study showed that users have diverse
browsing and re-finding habits, and 45% of the URLS are re-found
within 50 minutes. Therefore, the key design goal in FindAll is
to design a search engine that indexes web pages locally and soon
after the URL is first visited, to improve availability. The challenge
is in designing a search engine for a resource-constrained mobile
environment, while adapting to the user’s re-finding behavior. To
this end, FindAll indexes web pages only when the expected energy
benefit of indexing outweigh the indexing cost. FindAll estimates the
benefits of indexing by learning the re-finding patterns of each user
and predicting the re-finding probability. We implemented FindAll
over Android by adapting a publicly available search engine called
Galago. Our evaluations show that FindAll reduces search latency
by two-folds for users who re-find often. FindAll also reduces 3G
data usage by up to 100 MB a month by serving over 40% of the
web pages locally.

10. ACKNOWLEDGEMENTS

We thank our shepherd, Y. Charlie Hu, and all anonymous re-
viewers. Their reviews and comments greatly helped improve the
presentation of this paper. We thank all the participants of our
user study who helped us collect data. This work was supported in
part by an NSF Computing Innovation Fellowship and NSF grant
CNS-1217644.

1[}. REFERENCES

] Alexa top 500 websites.: http://www.alexa.com/topsites.
[2] Galago search engine: http://www.galagosearch.org/.
[3] Monsoon power monitor.: http://www.msoon.com/.
[4] D. Abrams, R. Baecker, and M. Chignell. Information archiving with
bookmarks: personal web space construction and organization. In
Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 41-48, 1998.
E. Adar, J. Teevan, and S. T. Dumais. Resonance on the web: web
dynamics and revisitation patterns. In Proceedings of the 27th
international conference on Human factors in computing systems,
pages 1381-1390, 2009.
A. Aula, N. Jhaveri, and M. Kiki. Information search and re-access
strategies of experienced web users. In Proceedings of the 14th
international conference on World Wide Web, WWW 05, pages
583-592, New York, NY, USA, 2005. ACM.
A. Balasubramanian, R. Mahajan, and A. Venkataramani. Augmenting
mobile 3g using wifi. In MobiSys ’10: Proceedings of the Sth
international conference on Mobile systems, applications, and
services, pages 209-222, New York, NY, USA, 2010. ACM.
G. Barish and K. Obraczka. World wide web caching: Trends and
techniques. IEEE Communications Magazine, 38:178-184, 2000.
E. Benson, A. Marcus, D. Karger, and S. Madden. Sync kit: a
persistent client-side database caching toolkit for data intensive

[5

—

[6

—_

[7

—

[8

=
L =R

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

websites. In Proceedings of the 19th international conference on
World wide web, WWW 10, pages 121-130, New York, NY, USA,
2010. ACM.

A. Cockburn, S. Greenberg, S. Jones, B. Mckenzie, and M. Moyle.
Improving web page revisitation: analysis, design and evaluation. IT &
Society, 1:159-183, 2003.

E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl. Maui: making smartphones last longer with
code offload. In MobiSys ’10: Proceedings of the 8th international
conference on Mobile systems, applications, and services, pages
49-62, New York, NY, USA, 2010. ACM.

T. Fagni, R. Perego, F. Silvestri, and S. Orlando. Boosting the
performance of web search engines: Caching and prefetching query
results by exploiting historical usage data. ACM Trans. Inf. Syst.,
24:51-78, January 2006.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and

I. Witten. The weka data mining software: an update. ACM SIGKDD
Explorations Newsletter, 11(1):10-18, 2009.

J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and P. Bahl.
Anatomizing application performance differences on smartphones. In
Proceedings of the Sth international conference on Mobile systems,
applications, and services, MobiSys ’10, pages 165-178, New York,
NY, USA, 2010. ACM.

E. Koukoumidis, D. Lymberopoulos, K. Strauss, J. Liu, and D. Burger.
Pocket cloudlets. In Proceedings of the sixteenth international
conference on Architectural support for programming languages and
operating systems, ASPLOS ’11, pages 171-184, New York, NY,
USA, 2011. ACM.

E. Lagerspetz, T. Lindholm, and S. Tarkoma. Dessy: Towards flexible
mobile desktop search. In Proceedings of the DIALM-POMC
International Workshop on Foundations of Mobile Computing,
Portland, Oregon, August 16, 2007, CD-ROM. ACM, 2007.

N. Lester, A. Moffat, and J. Zobel. Efficient online index construction
for text databases. ACM Trans. Database Syst., 33:19:1-19:33,
September 2008.

D. Lymberopoulos, O. Riva, K. Strauss, A. Mittal, and A. Ntoulas.
Pocketweb: instant web browsing for mobile devices. SSIGARCH
Comput. Archit. News, 40(1):1-12, Mar. 2012.

Microsoft. See your search history: http://onlinehelp.
microsoft.com/en-us/bing/ff808483.aspx.

P. Shodjai. Your slice of the web:
http://tinyurl.com/24vhmw, 2007.

Sprint Capping Unlimited 3G Data Service at SGB.
http://gizmodo.com/391887/

oh-no-sprint-capping-unlimited-3g-data-service-at-5gb,

2008.

J. Teevan, E. Adar, R. Jones, and M. A. S. Potts. Information
re-retrieval: repeat queries in yahoo’s logs. In Proceedings of the 30th
annual international ACM SIGIR conference on Research and
development in information retrieval, pages 151-158, 2007.

S. K. Tyler and J. Teevan. Large scale query log analysis of re-finding.
In Proceedings of the third ACM international conference on Web
search and data mining, pages 191-200, 2010.

S. K. Tyler, J. Wang, and Y. Zhang. Utilizing re-finding for
personalized information retrieval. In Proceedings of the 19th ACM
international conference on Information and knowledge management,
pages 1469-1472, 2010.

Z. Wang, F. X. Lin, L. Zhong, and M. Chishtie. How effective is
mobile browser cache? In Proceedings of the 3rd ACM workshop on
Wireless of the students, by the students, for the students, S3 ’11, pages
17-20, New York, NY, USA, 2011. ACM.

1. Witten, A. Moffat, and T. Bell. Managing gigabytes: compressing
and indexing documents and images. Morgan Kaufmann, 1999.

J. Wortham. Customers Angered as iPhones Overload 3G.
http://www.nytimes.com/2009/09/03/technology/
companies/03att.html?_r=2&partner=MYWAY&ei=
5065/, 2009.

Y. Xie and D. R. O’Hallaron. Locality in Search Engine Queries and
Its Implications for Caching. In Proc. IEEE Infocom, pages
1238-1247, June 2002.

